Assignment of Empirical Mode Decomposition Components and Its Application to Biomedical Signals.

نویسندگان

  • K Schiecke
  • C Schmidt
  • D Piper
  • P Putsche
  • M Feucht
  • H Witte
  • L Leistritz
چکیده

OBJECTIVES Empirical mode decomposition (EMD) is a frequently used signal processing approach which adaptively decomposes a signal into a set of narrow-band components known as intrinsic mode functions (IMFs). For multi-trial, multivariate (multiple simultaneous recordings), and multi-subject analyses the number and signal properties of the IMFs can deviate from each other between trials, channels and subjects. A further processing of IMFs, e.g. a simple ensemble averaging, should determine which IMFs of one signal correspond to IMFs from another signal. When the signal properties have similar characteristics, the IMFs are assigned to each other. This problem is known as correspondence problem. METHODS From the mathematical point of view, in some cases the correspondence problem can be transformed into an assignment problem which can be solved e.g. by the Kuhn-Munkres algorithm (KMA) by which a minimal cost matching can be found. We use the KMA for solving classic assignment problems, i.e. the pairwise correspondence between two sets of IMFs of equal cardinalities, and for pairwise correspondences between two sets of IMFs with different cardinalities representing an unbalanced assignment problem which is a special case of the k-cardinality assignment problem. RESULTS A KMA-based approach to solve the correspondence problem was tested by using simulated, heart rate variability (HRV), and EEG data. The KMA-based results of HRV decomposition are compared with those obtained from a hierarchical cluster analysis (state-of-the-art). The major difference between the two approaches is that there is a more consistent assignment pattern using KMA. Integrating KMA into complex analysis concepts enables a comprehensive exploitation of the key advantages of the EMD. This can be demonstrated by non-linear analysis of HRV-related IMFs and by an EMD-based cross-frequency coupling analysis of the EEG data. CONCLUSIONS The successful application to HRV and EEG analysis demonstrates that our solutions can be used for automated EMD-based processing concepts for biomedical signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of Empirical Mode Decomposition Components of HRV Signals for Discriminating Emotional States

Introduction Automatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV). In t...

متن کامل

Blind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm

Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...

متن کامل

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

Benders’ decomposition algorithm to solve bi-level bi-objective scheduling of aircrafts and gate assignment under uncertainty

Management and scheduling of flights and assignment of gates to aircraft play a significant role to improve the performance of the airport, due to the growing number of flights and decreasing the flight times. This research addresses the assignement and scheduling problem of runways and gates simultaneously. Moreover, this research is the first study that considers the constraint of unavailabil...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Methods of information in medicine

دوره 54 5  شماره 

صفحات  -

تاریخ انتشار 2015